
UNCLASSIFIED

AD NUMBER

AD485829

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; APR 1966.
Other requests shall be referred to
Ballistic Systems and Space Systems Div.,
AFSC, Los Angeles Air Force Station, CA.

AUTHORITY

SAMSO ltr, 25 Nov 1968

THIS PAGE IS UNCLASSIFIED



A~i- FORCE REPORT NO.

SSD-TR-66-87 ARO.S,.AC REPORT NO,
TR-66 9(es 90).6

Detection Probabilities for;Log-Norm'ally
Distributed Signals

APRIL 1966

Eh'cirottiv iR., tarc A Iuboralor~v

lzIpuralaior c. Dlivision

!,abongigorv O)pt'ruisjvni

AIIIOSPACK ('0141OIIATION

I1'rpared for 11IJAI.ST'IC SYSTEj.MS A~ND SPACE SYSTms DIV'ISIONS
All' I:Fonci,: sysTEms COMMNAND~

IDS ANiGHES AMjj I'TDi(E, STATION

Best Available Copy AG516



Air Force Report No. Aerospace Report No.
TR- 669 (9990)-6

DETECTION PROBABILITIES FOR LOG-NORMALLY

DISTRIBUTED SIGNALS

Prepared by

G. R. Heidbreder and R. L. Mitchell
Electronics Research Laboratory

Laboratories Division
Laboratory Operations

AEROSPACE CORPORATION

April 1966

Prepared for

BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS
-AIR FORCE SYSTEMS COMMAND

LOS ANGELES AIR FORCE STATION
Los Angeles, California



FOREWORD

This report is published by Aerospace Corporation, El Segundo,
California, under Contract No. AF 04(695)-669.

This report, which documents research conducted between 1 January
and 15 February 1966, was submitted on 12 May 1966 to Captain Ronald J.
Starbuck, SSTRT, for review and approval.

The authors wish to acknowledge Mr. Arlyn Boekelheide for helpful
discussions, and Dr. B. J. DuWaldt for pointing out the significance of the
problem and contributing many helpful suggestions. The authors also wish
to express appreciation to Maj. R. W. Kennedy (AFAL) for supplying the
data presented in Fig. 1.

Information in this report is embargoed under the U. S. Export Control
Act of 1949, administered by the Department of Commerce. This report
may be released by departments or agencies of the U. S. Government to
departments or agencies of foreign governments with which the United States
has defense treaty commitments. Private individuals or firms must comply P
with Department of Commerce export control regulations.

Approved

B71). Kin irector
Electronics Research Laboratory
Laboratories Division
Laboratory Operations

Publication of this report does not constitute Air Force approval of
the report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

Air Force Systems Command

-ii- A



ABSTRACT

The amplitude and power of a large family of radio signals

are observed to have log-normal probability density func-

tions. Among these are signals propagated through random

inhomogeneous media, a notable example being low frequency

atmospheric radio noise. Of greater importance are certain

radar targets that have been observed to have essentially

log-normal density functions. Both ships and space vehicles

may fall into this category. Curves of probability of detection

versus signal-to-noise ratio for the case of log-normal signals

in Gaussian noise have been computed and are presented in

this paper. The curves apply for square-law detection with

varying degrees of post-detection linear integration. Both

slowly and rapidly fluctuating signals are considered. It is

shown that for log-normal signal distributions having large

variances the probability of detection differs significantly

from that obtained using curves based on an assumed Rayleigh

signal distribution.
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I. INTRODUCTION

The detection of fluctuating signals in the presence of Gaussian noise

has been studied widely [l]-[4] since the extensive pioneering treatment of

detection theory for constant amplitude pulsed signals in noise by Marcum 15].

All of these studies are extensions of Marcum's work. In almost all cases,

the fluctuating signal amplitude has been assumed to be Rayleigh distributed.

This choice is due to the well-known fact that the sum of a large number of

independent random vectors having uniform phase distributions is a Rayleigh

vector, i. e., one having a uniform phase distribution and a Rayleigh ampli-

tude distribution, provided only that the number of contributing vectors is

very large and that no single vector contributes significantly to the total power

[6]. Swerling [11] has presented curves of the probability of detection as a

function of the signal-to-noise ratio for both Rayleigh-distributed signals and

for signals whose power is distributed Chi-square with four degrees of free-

dom. Since N, the number of pulses integrated, is presented as a parameter,,

and since a square-law detector is assumed, results for signals whose power

is distributed Chi-square with 2N degrees of freedom may be inferred. It is

only necessary to observe that the sum of a Rayleigh noise vector and a

Rayleigh signal vector is. itself, a Rayleigh vector and that the post-detection

sum of N independent signal plus noise variates is then the sum of the squares

of 2N independent Gaussian variates and, hence, is Chi-square with 2N degrees

of freedom. As Swerling has noted [2], one can construct a wide variety of

probability density functions from the Chi-square family. In choosing a

member of the Chi-sqtuar. family to fit a particular distribution, one is free

-1-



.. , 't x, I*.,r'.jlau.te~rs, cv. g. , th, in.t•n and the number of degrees of free-

,I*,I. illiv rtit dv t-rc-s of skewnes:, are: obtained as the number of degrees

-1 trcti o i is vari ed.

I h .,-,i-utic[i of signals cotinpoeed of a large number of small inde-

Ii ttIt' i it rIittr i t I titr'ibutions appears to be reasonable in many cases, e. g.

W' ~•,�ti'ýL -,cttttrt.rd l)y many radar targets consist of contributions from

,,it-ru,. .nld d\icrse reflecting elements. It has become common practice

.rta, tiuzot fluctuatting radar returns as having Rayleigh-distributed ampli-

.,.ht. t1x|* r tiental evidence for the existence of Rayleigh-distributed

-'tIlar rctutrils is not altogether conclusive, how(.ver. Early investigators [7]

l0,tllmd theat, whiLt, ta rget cross sectioun distributions followed the Rayleigh law

rt',unaluby wCtl for tow crosu svt t iouns, they often exhibited a pronounced

high c:ross s'ctioli tail, i. e. , higher probability density at the high cross

. l Ihl 11011C 11tU,1 by the Ratyi'ghl [.,w. "Ihi ( difference is consistent

with tilt- 1(th-a that . few tIarge sturftces p)rt-dominitte in the target. The case

a, ,it I'r.aft aIl*t, I'p''r It ' hel ii notatbhe txce-',I Ionl Whu i- experimental daIta are

4,il lis v¢.ly IyyLeigh. 'there has been sonic di sagreenment on this point [18 ,

ltili ltilt- ti,.,jor t10dy of opinion supports the Rayleigh interpretation 19], [10].

ori,. r 'cciatly. Itarrisoni [IIJ in atialyllg the Htatistics of the radar

r-tlurnts fromt shtips hats fond that the return sipuial strength dia?'rihution

ol,.tly follow. a luog-normral law. Spitce vehicli, and saitellittv cross sections

hv, Astio typically exhibited' non-Rayleigh statistics. They are usually

ch.,ricttri,.ed by a very large dynamic ratnge and variance D 1-J. Kennedy

I 5 I.1 t ,bt~tinud statistical data on the radar cross section of a satellite,

X.-.tllllirtig the distribution over aspect angle and frequency. The resulting



cross section probability density functions are shown in Fig. 1. One of the

density functions was obtained by measuring over aspect angle alone with all

aspect angles assumed to be equiprobable. The same aspect measurement

procedure was followed in obtaining the other density function, with frequency

averaging being obtained by stepping the frequency of alternate radar pulses.

The density functions .appear to be log-norrrial and, significantly, exhibit

mean values about 10 dB above the median values. The high ratio of mean-

to-median values is due to the pronounced high cross section tail of the

distribution. It is not possible to obtain such a mean-to-median ratio with

any member of the Chi-square family suggested by Swerling.

Weinstock [14 ] hat studied the modeling of certain classes of sateltite

bodies and has attempted to fit empirical data to Chi-square models. The

difficulty in fitting members of the Chi- square family is evident when one

considers the variance and inean-to-median ratio. Starting with Swerling's

generalized distribution [2]

k I k

we have for the variance

.7

2D (x) =

where k is one-half the number of degrees of freedom of the Chi-square

distribution. The median, x.n, is given by the solution of

e-3 -



(IX exp )

or

Ioxm/ k-i
1 /u exp(-u) du =

The latter expression is recognized as a form of the incompL:te gamma

function. Solving for l/xm with k = 1, the result is i/xm = 1.44. For

k = 2, it is 1. 18, and it approaches unity with increasing k. Since large

variances and mean-to-median ratios may characterize radar targets of

interest, the Chi-square family with integral k may be unsuitable.

Weinstock [13 ] has allowed k < 1 in order to fit the Variance and mean

to empirical data but has found disagreement of higher order rn.oments

and a lack of fit on the tails of the distributions. He found that for a

class of bodies of the conducting cylinder type a reasonable fit could

be obtained by varying k between 0. 3 and 0.7.

Current system analysis and design practice uses the Swerling

Chi- squared models almost exclusively, with the mean characterizing

the distributions treated. Both Weinstock [14 3 and Swerling have

observed that if a single parameter is to be used to characterize a distri-

bution the median is preferred over the mean. The median is less

influenced by high cross section tails of distributions and leads to a

more conservative choice of design parameters. To conclusively check

the validity of this assertion, it is necessary to compute the probability

"4-.



of detection as a function of median signal-to-noise ratio for distributions

having large ratios of mean-to-median values. The log-normal distribution,

in addition to being one that is found to occur in practice, is one that repre-

sents an extreme in high cross section tails. It is therefore suitable for

checking the accuracy of design procedures that use existing cross section

models but characterize distributions by their medians.

This paper presents the results of a numerical computation of the

probability of detection for a large family of fluctuating signal distributions

that are log-normal.

II. LOG-NORMAL SCATTERING MECHANISMS

The nature of the scattering mechanisms that lead to log-normal

density functions for radar targets is not understood, and no attempt at a

complete analysis is made in this paper. Nevertheless, a brief conjecture

on this point seems in order.

If a random signal amplitude has a log-normal distribution, it can

be represented by

X = A

where # is normally distributed. A log-normal distribution occurs in radio

propagation through inhomogeneous media, the logarithmic variable * being

interpreted as the sum of independent attenuation factors associated with

statistically independent regions or "blobs" in the medium [151. In the

case of the radar cross section measurements referred to above, however,



it seems clear that the signal fluctuations are -due t6 statistical effects I
associated with the targets. One possible explanation for log-normal

target statistics has been suggestcd by DuWaldt [16J who noted that the

effect of surface roughness on the specular return from a flat plate is

to reduce the cross section relative to that of a smooth plate by a factor

e-', where * is proportional to the mean-square surface depth fluctuation.

If the radar return at any aspect angle is that from a single surface selected

from an ensemble having a normally distributed degree of roughness, log

normal amplitude statistics result. Since the return from a ship at any

given aspect angle is largely due to a single predominant dihedral corner,

the log-normal tharacter of ship returns might thus be explained.

III. THE PROBABILITY OF DETECTION FOR

LOG-NORMALLY DISTRIBUTED SIGNALS

The computational procedures are based on the receiver models used

by Marcum and Swerling, i. e., a linear receiver preceding a square-law

detector and followed by post-detection integration which gives equal weight

to all the pulses added. As in Swerling [l1), two extremes of pulse-to-pulse

correlation are treated. These are:

Case 1: All pulses occurring during an integration period are

perfectly correlated. Pulses in successive integration

periods are independent. In the case of a scanning radar,

this implies independent fluctuations from scan to scan but

with no fluctuation during a @Can-



Case •: The fluctuations are independent from pulse to pulse.

"The probability density, fN(y), of N integrated signal plus noise

variates at the detector output is integrated to obtain the probability of

detection,

PD(X) f fN(y,'i)dy (1)
Y b

The density function of signal plus noise and the probability of detection

are functions of some measure of power in the signal distribution. The

average signal-to-noise power ratio, x, is used. The normalization is the

same as that used by Marcum, and, hence, the detection threshold level,

Ybo is as given therein, namely, the solution of

1~N/n
"1 - (7) = f fN(y, 0) dy (2)

where n is the number of pulses in the time required for the false alarm

probability to reach 0. 5. Values of Yb as a function of N and -a are

tabulated in Table I.

In Case 1, the density function, fN (yi)) is obtained by averaging

Marcum' a density function for a constant signal plus noise over the

distribution of the signal-to-noise power ratio. Thus,

fN(Y,) fN(y/x) f(xi) dx(3)

-7-



where fN(y/x) is the conditional probability density of the integrated detector

output signal plus noise variate y, given a signal-to-noise power ratio x and

where f(xi) is the density function for the signal-to-noise power ratio. For

a log-normally distributed signal,

22 V(ox x al

where a is the variance of 1n x.

For the presentation of the results, it is more convenient to charac-

terize f(x,i) by the parameters i and p, the ratio of mean to median values.

In terms of a ard n1",

x = expVT K I

In case 2, fN(yx) is the result of an N-fold self-convolution of

fl(y,i) as given by Eq. (3).

Details of the numerical computation are given in the appendix.

IV. RESULTS AND CONCLUSIONS

Curves of the probability of detection as a function of average sipal-

to-noise ratio are presented in Figs. 2 - 28 for Cases 1 and 2, with the

number of pulses integrated, N,. as a parameter. Fixed values of p and the

false alarm number n were used in plotting the curves, namely,

i-8-



6 8 10p 1, 2, 4, 8, 16 andn= 10 , 108, 10I. Figures 2 - 4 are identical to

those in Marcum since for p 1 the variance is zero and, hence, the target

is not fluctuating. Cases 1 and 2 are thus identical for p = 1. In Figs.

29 - 43, the curves have been replotted with p as a parameter. These

figures are useful for interpolation in p.

To improve the accuracy of interpolation in p, it may be advantageous

to first plot the curves with p as a parameter as a function of the median

signal-to-noise ratio (or to normalize R to unity median signal-to-noise

8ratio). A set of such curves for n = 10 is presented in Figs. 44 - 50.

The curves for Case 1 intersect near 50-percefnt probability of detection

and, hence, facilitate interpolation. A very different behavior is observed

in Case 2 when the curves are plotted versus the median signal-to-noise

ratio. The point at which the curves intersect shifts to higher values of

probability as the number of pulses integrated is increased.

The form of presentation is that of Marcum and Swerling. While it is

recognized that this format is not always convenient, it seems preferable

in view of the wide circulation of the curves compiled by the aforementioned

authors and the resulting ease of comparison. A secondary reason is the

compression of the curves afforded by plotting probability of detection

versus normalized radar range which is inversely proportional to the

quarter-power of the signal-to-noise ratio. This compression is desirable

because of the flattening of the curves with increasing variance of the

signal distribution. A nonlinear dB scale for the signal-to-noise ratio is

added for convenience.

. I , -



As p is increased from unity at constant average signal-to-noise ratio,

the probability of detection is reduced at high signal-to-noise ratios and

increased at low signal-to-noise ratios. The sensitivity to a change in p is

seen to be greatest for small p. As p is increased to very large values,

the probability density function approaches a delta function at the origin.

To show this, it is first noted that the mode of the log-normal distribution

is at

- 2-
Xmod =el-x' x

p

The peak value of the density function is

2
f . _ m o d e " ;Cx) = Z • " " -P i

Z-ATrln pi

Hence,

linaXmode =0

im f(Xmodes.i)
p-rn

It can be shown that unit weight in associated with the delta function on

examination of the probability that the signal-to-noise ratio exceeds some

positive value c

"-10-



OD

P(x>e) =f f(x, Z) dx

fE e dz

where z = (In x - l-x)/N-Z a7, and

E=In e - lnx'+ Inp

Then, if C is fixed at any finite positive value,

lir P(x>1) 0

As a consequence, the probability of detection for any finite average signal-to-

noise ratio approaches zero as p is increased without limit.

The relative insensitivity of the probability of detection to a change in

p at p = 16 is due to the fact that the mode of the distribution is already 36 dB

below the average value. Hence, the probability weighting in the vicinity of

the mode is not significant for all but the very highest signal-to-noise ratios.

At larger values of p, the probability of detection is governed by the relatively,

flat and slowly decreasing tail of the density function. The behavior of f(x, 1)

with increasing p in the range of values used for the calculations is illustrated

in Figs. 61 and 62. These curves are indicative of the behavior for all .

since

f(3.k)a



The effect of variation in • at constant p is illustrated in Fig. 63.

It is of interest to compare the results with those obtained by Swerling

using Rayleigh-distributed signal amplitude. Figures 51 - 56 show the

comparison for n = 108 and p = 2, 16 (Case 1) and p = 2, 4, 8, 16 (Case 2).

For p = 2, there is relatively good agreement between the curves over a wide

range of signal-to-noise ratios. (It should be recalled that for the Rayleigh

distribution p equals 1. 44. ) The agreement is particularly good for Case 2

when a large number of pulses is -integrated. This is to be expected since

the sum of a large number of independent variates approaches a normal

distribution regardless of the distribution of the individual variates. The

curves differ widely for p = 16, however, thereby illustrating the in-

applicability of Swerling's curves when the mean-to-median signal power

ratio is very large. The probability of detection for Cas- 2 based on the

normal approximation to the density function of the detector output is also

shown in Figs. 53 - 56. The details of the computatio- are given in the

appendix.

Figures 57 - 60 show the above data plotted versus the median signal-

to-noise ratio. For the curves from Swerling. the signal-to-noise, ratio

is the average signal-to-noise power ratio. Thus, Ro is to be interpreted

as that range for which the log-normal target has unity median signal-to-

noise ratio and the Rayleigh target has unity average signal-to-noise ratio.,

These curves permit Judgment of the efficacy of entering Swerling's curves

with median signal-to-noise ratio in the hope of obtaining a conservative

estimate of performance. It is seen that a conservative estimate is obtained

for p z 2 in both Cases I and 2. For larger values of p, the curves for the

-12



log-normal distribution fall below those for the Rayleigh distribution over a

portion of their range. Nevertheless, conservative estimates are obtained

almost everywhere for p = 16 in Case 2. In Case 1 for p= 16, the blip-scan

ratio predicted by the Rayleigh curves never exceeds the actual one by as

much as 10 percent.

When the statistical description of a radar target is obtained by

averaging over all of the aspect angles and assuming them to be equally

probable, some discretion must be applied in using the resulting model.

it is entirely possible that a high cross section tail in the density function

results from specular returns at relatively few aspect angles. If, then, the

target Attitude is relatively stable during a radar intercept, the equally
-a8

probable aspect assumption can lead to very erroneous results. Conserva-

tively, it may be best to neglect the high cross section tail of the density

function when a lower bound on detection probability is desired. Thus, the

procedure of using the Rayleigh curves with a median signal-to-noise ratio

would be a good one. On-the other hand, if one is interested in an upper

bound on detection probability, the tail of the density function must be con-

sidered. The Rayleigh curves are then completely unsu.'table.

-13;



Table 1. Detection Threshold (Bias) Level, YE

Detection Threshold (Bias) Level, Yb

(Accurate to 0. 002)

n 106 n= 108 1010

Nz 1 14. 182 18.787 23. 392

2 16.342 21. 194 25.995

4. 20. 168 25. 438 30. 574

8 26.910 32. 857 38.544

10 30. 037 36.277 42. 202

20 44.485 51.944 58.864

40 70.718 80.024 88.454

80 119.303 131.371 142.051

100 142.681 155. 898 167.510

,00 255. 526 273. 399 286 756

,100 472.717 497.484 518.321

800 895.459 930.451 959.289

1000 1104. 188 1143.432 1175.559

-14-
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APPENDIX

Computational Procedures

A. CASE 1

The required result is, from Eqs. (1) and (3),

PD(;•) bf N(y, ) dy
Yb

dy f fN(y/x) f(x, ) dx0

Interchanging the order of integration yields

D( )4.dx f(x, fN(y/x) dy
0 Yb

The inner integral is seen to be precisely the probability of detection ob-

tained by Marcum. Denoting this by P'(x). we have

PDx f Pj0 (x) fxx)dx

The integration is made numerically tractable, taking advantage of the normal

I
distribution of In x, by means of the substitution

In x - (A.1)
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Then

CD 2
PD(x) = ez P 1 (z) dz (A-2)

where Pi(z) is P'(x) under the transformation of Eq. (A-1). The integration

in Eq. (A-Z) is readily performed by means of a numerical quadrature inte-

gration formula based on the Hermite polynomials [17]. As in Marcum [5],

P'(x) is computed using a Gram-Charlier series with the Edgeworth grouping

of terms to represent fN(y/x). Thus,

f0Ny/x) E -- W(t)= g(t) (A-3)

it-0 =O

where t = (y - 71y)V [pi is the ith central moment of fN(y/x)],

0 i(t) = -Ii-t 2/Z Hit

and Hi(t) is the Hermite polynomial of degree i. The coefficients ci are

given by

Ci -T'-J Hi(t) g(t) dt

H dy

-so-



Substituting
H (t),• .1) m i-Zm

Hi~~t•-i••. 2M. (i - 2m)!

m= 0

yields

C U 2r! (i - m)I• • fNly/x) dy

m= 0

E 2m M i - 2m) 1

m= 0

The •i are expressed in terms of the moments about the origin vi by

i-n
I vI vn(A-4)

n=0

The moments vi are, in turn, obtained using the characteristic function as a

moment generating function. Thus,

Vi 14 .•1!° (A-5)

From the results

4-Si



N(Y/X) v (..)N1)12 e-yNxI (2 )(A6

and

C(P)= eN'x Nx/(p+l)
(p +

Marcumn obtains

V= (N + - 0! 1Fl(-i. N, -Nx) (A-?)

where jlis the confluent hypergeometric function. The coefficients c. are

computed from Eqs. (A-7), (A-5), and (A-4) using the recursion relationship

=Nx + N + 2i - 2ri-.N, Nx) N1+i I 1 F(-i + 1. N, Nx)

N-Tr17I 1 F, (-i+ 2.N, Nx)

Finally, P'(x) is obtained as

PI (X) ffN(Y/x) dy

Yb

-~f~t) dt

where

T - V1I

t ri-



The function fN(y/x) is given by Eq. (A-3), so that

~1Plx W cif §'(t) dt

The result of the integration is

P'(x)= - (T) - 3c f(T)]- [c 4O (T) + c6 |#(T)J

- [c5 04 (T) + c÷ (T) + c.. ...

The brackets indiLate the Edgeworth grouping of terms (co = 1 and

c: c 0 = ). Following Marcum, all of the curves except those for N 1 1

wei e computed using only the first three Edgeworth groupings to approxi-

mate P'(x).

The accuracy of the calculation is limited by the number of ordinates

used in the quadrature integration formula. A total of ZO were used, i. e.,

th1

where the a are zeros of the 0t -degree Hermite polynomial and the w(t 1 -

are the quadrature formula weighting factors L17]* The effect of using a

small number of ordinates is to introduce error in the points on the proba-

bility of detection curves. In general, with 20 ordinates, the computed points

generate a smooth curve, although some spreas .is noticeable for the larger

-83-°
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values of p. The manner in which the spread decreases is shown in Fig. A-I

which gives points for N = 1, n = 1010, and p= 16 obtained using 10, 16, and

20 ordinates. It appears from the manner in which the points converge as the

number of ordinates increases that the maximum error in probability is of

the order of 0. 01 and occurs for low detection probabilities. The curves of

P'(x) obtained for N = 1 and p = 1 are quite smooth and agree remarkably well

with Marcum's curve except at very low probabilities. The curves of PD(i)

for N 1 were obtained as discussed under Case 2. Cases I and 2 are the

same for N -.

B. CASE 2

The probability density function of N integrated signal plus noise variates

at the detector output where the fluctuations are independent from pulse to

pulse is given by the N-fold self-convolution of f!(y,i). For numerical compu-

tation, the Hermite quadrature integration formula in Eq. (A-8) is a convenient

method to calculate fI(y, ). But, for this case, the integrand is equal to

f 1 (y/x)/I'/ under the transformation of Eq. (A-I). The function fI(y,Y-') was

computed for 621 points over the interval 0(0. 06)37.21 for each combination

of 0 and Z (values of ;were chosen at 3--dB increments). The function f2 (y)

is obtained by convolving f (yI ,7) with Itself. At this point, the increment in

y was doubled so that the 311 points on the interval 0(0. 12)37.2 correspond to

every other point on the previous interval. The function over the interval

37. 32(0. 12)74.4 was assumed to be zero. Similarly, f 4 (yi) was obtained

IThe interval (0, 37. 2) was divided into increments of 0. 06.
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from f2 (y,x), f8 (y,I•) from f4 (y,, and fl 0 (Yx) from both f2 (y,') and f 8 (y, X).

This procedure is continued to obtain fN(y, )for N = 20, 40, 80, 100, 200,

400, 800, and 1000. The increment in y was doubled (in the same manner as

before) after 10, 20, 100, and 200. The probability of detection,

P D(X = 1 N (y, _) dy i'P ~~fbN(

was computed by Simpson's rule for numerical integration. Simpson's rule

was also used in the convolution integrals.

The question of accuracy is difficult to answer because of the difficulty

in obtaining the maximum value of high order derivatives of fl(Y/x) and

fN(y, X) either analytically or numerically. These derivatives are needed to

fix a bound on the numerical integration errors [17]. However, by doubling

Ihe initial increment in y and using only half as many points for fl(y,i), the

resulting computed probability of detection seldom changed by as much as

0. 01 (the greatest differences usually occurred at low detection prtobabilities).

About 1 hour of computing time on the SDS 920 computer was required to find

fl 0 0 0 (y,X). At first glance, it would seem possible to shorten the computation

time by an approximation method. This is discussed next.

As the number of integrated pulses, N, is increased, it is expected that

fN(y, i) will approach a normal density function with mean and variance equal

to N times the mean and variance of fl(y,x-). It is also possible to inctude a

first-order correction term [18] as
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(,)- Te + -( 3 (A-9)6a N

where =(y - N)IaTN.

The quantities N , m 3 Nare the first moment and second and

third central moments of fN(,ý) respectively., The probability of detection,

provided the approximation is valid, is given by

) ./2 dg + m3 N_ eS$/22(S - 1) (A-10)

fs'O N

where S =(Y.b "N)/ON"

The general moments of fl(Y, i') can be calculated in a straightforward

manner. The kth moment about the origin of f (y/x) as a function of x is

given by

Vk(X) =f y kf(y/x) dy

fok -~(x+y) io(2%x) dy

= k! Lk(-X)

where Lklx) is the Laguerre polynomial of the kth degree. Hence, the kth

moment about the origin of iI (y, x) is given by

k'
'k •o Vk(X) f(x,x-) dx

-86-



which can be expressed in terms of the moments of f(x,x'). Thus, the first

few moments are given by

i=+ x

"2"v=2 + 4x-+ x

v 3  6 + 18x+ 9x"+ x

24 4+ 96G+ 72x-+ 16x +x

th
In general, the n moment of a log-normal distribution is given by

n Pn(n- )-n
x = X

Hence, the moments of fl(y,) can be expressed in terms of p and x. The

central moments can be computed by means of Eq. (A-4). Finally,

IN= NIl + i]

a 2= Nl1 + 27+ (P2 2
2 -

m 3N= NZ + 6x+ 6{(p 2 l)2 + (Z + p 6 3p )•)0

- For large p, the coefficient of the correction term in Eq. (A-10) is given

approximately by
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r3N PL. (A-li1)
mN

A necessary, but not sufficient, condition for the convergence of Eq. (A-10)

to the true probability of detection is that Eq. (A-l i) should be much less than

unity. Based on this result, N>> 16 for p 4, N>> 1000 for p = 8, and

N >> 75, 000 for p = 16.

The probability of detection based on the normal approximation (one

term only) is shown in Figs. 47 - 50 for p = 2, 4, 8, and 16 and n = 108. For

p = 2, the normal approximation is accurate for N = 100 and 1000. For p = 4,

it is accurate for only N = 1000, and, for p > 4, it is not a suitable represen-

tation for the actual probability of detection. The first-order correction term

is, in most cases, either negligible or unrealistic (i. e., probabilities larger

than unity).
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